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Abstract

The use of a conceptual model (or an ontology) to describe relational data sources has been
proved to be extremely useful to overcome many important data access problems. However,
the task of wrapping relational data sources by means of an ontology is mainly done manually.
In this paper we introduce an automatic procedure for extracting a conceptual view from a
relational database. The semantic mapping between the database schema and its conceptu-
alisation is captured by associating views over the data source to elements of the extracted
conceptual model. To represent the conceptual model we use an ontology language, rather
that a graphical notation, in order to provide a precise formal semantics. In particular we
adopt a variant of the DLR-Lite description logic because of its nice computational properties,
and ability to express the mostly used modelling constraints.

In order to uncover the connections between relational schema and the conceptual model,
the heuristics underlying the ontology extraction process are based on ideas of standard re-
lational schema design and normalisation. In fact, we assume that the relational source is
in third normal form, and designed by means of a principled methodology; e.g. using Entity-
Relationship or UML diagrams.
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Chapter 1

Introduction

The use of a conceptual model or an ontology over data sources has been shown to be necessary
to overcome many important database problems. These include federated databases [18], data
warehousing [7], information integration through mediated schemas [14], and the Semantic
Web [11] (for a survey see [19]). Since ontologies provide a conceptual view of the application
domain, the recent trend to employ such ontologies for navigational (and reasoning) purposes
when accessing the data gives additional motivation for the problem of extracting the ontology
from database schema [13]. When such an ontology exists, modelling the relation between the
data sources and an ontology is a crucial aspect in order to capture the semantics of the data.

In this paper we define the framework for extracting from a relational database an ontology
that is to be used as a conceptual view over the data, where the semantic mapping between
the database schema and the ontology is captured by associating a view over the source data
to each element of the ontology. Thus, the vocabulary over the ontology can be seen as a set of
(materialised) views over the vocabulary of the data source [10] (i.e., similar to the technique
known as GAV approach in the information integration literature [14]). The advantages of
such a scenario are clear since it enables to access and query the underlying data using an
ontology vocabulary.

To describe the extracted conceptual model, we provide an expressive ontology language
which can capture features from Entity-Relationship and UML class diagrams, as well as
variants of Description Logics. The heuristics underlying the ontology extraction process are
based on ideas of standard relational schema design from ER diagrams in order to uncover
the connections between relational constructs and those of ontologies. Besides the latter
assumption the procedure presented in this paper takes into consideration relations being in
third normal form (3NF) – in such a way best reflecting concepts of object-oriented data
models.

The rest of the paper is structured as follows. In the next section we present the formal
framework, where first the constraints expressed over the relational schema are defined, and
the ontology language is presented. In the section on ontology extraction we describe an
intuitive progression of ideas underlying our approach, and discuss the extraction procedure.
Then, we provide an example illustrating all the process. In the last section we report on
related work, and we draw some conclusions.
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Chapter 2

Preliminaries

We introduce the formal framework for representing the ontology and its relation with a rela-
tional data source. We adopt a standard relational model together with integrity constraints,
detailed in the next section. The ontology language adopted enables the representation of
“standard” modelling constructs which are commonly used in Entity-Relationships or UML
diagrams (see [5]).

The use of an ontology language can be seen as an alternative to the use of standard
modelling paradigms of Entity Relationships or UML diagrams. The advantage over these
formalisms lies on the fact that the ontology language has a clear and unambiguous semantics
which enables the use of automatic reasoning to support the designer.

2.1 Relational Model

We assume that the reader is familiar with standard relational database notions as presented,
for example, in [1]. We assume that the database domain is a fixed denumerable set of elements
∆ and that every such element is denoted uniquely by a constant symbol, called its standard
name [15]. We make use of the standard notion of relational model by using named attributes,
each with an associated datatype, instead of tuples.

Definition 1 A relational schema R is a set of relationships, each one with a fixed set of at-
tributes (assumed to be pairwise distinct) with associated datatypes. We use [s1 : D1, . . . , sn :
Dn] to denote that a relationship has attributes s1, . . . , sn with associated data types D1, . . . , Dn.
We interpret relationships over a fixed countable domain ∆ of datatype elements, which we
consider partitioned into the datatypes Di. The domain contains a special constant (null) called
the NULL value.

A database instance (or simply database) D over a relational schema R is an (interpre-
tation) function that maps each relationship R in R into a set RD of total functions from the
set of attributes of R to ∆. The instance must satisfy the attribute datatypes specified in the
relational schema. I.e., if R has attributes [s1 : D1, . . . , sn : Dn], and φ ∈ RD, then φ(si) ∈ Di

or φ(si) = null.

To ease the presentation of the semantics we make use of relational algebra. To this pur-
pose, we introduce the definition of a projection of a relationship over a sequence of attributes.
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Let A = [s1, . . . , sm] be a sequence of m attribute names of a relationship R of a schema R,
and D a database over R. The projection of RD over A is the relation πAR

D ⊆ ∆m
D , satisfying

the condition that φ ∈ RD iff (φ(s1), . . . , φ(sn)) ∈ πAR
D. Note that the order of the attributes

in A fixes the correspondence between positional arguments of πAR
D and the attribute names

of R.
As for the semantics of null values, we assume that they represent unknown values. That

is, a null value is considered different from any other constant and from a null value in any
other tuple. Formally, this has an impact on the equality among tuples; that is, two tuples
(t1, . . . , tn) and (t′1, . . . , t

′
n) are equal iff ti = t′i and they do not contain null values.1

The ontology extraction task takes as input a relational source; e.g. a DBMS. We abstract
from any specific database implementation by considering an abstract relational source DB,
which is a pair (R,Σ), where R is a relational schema and Σ is a set of integrity constraints.
The semantics of relational schemata is provided in the usual way by means of the relational
model. Below we briefly list the kind of database integrity constraints we consider in our
framework.

• nulls-not-allowed constraints: given a relation r in the schema, a nulls-not-allowed con-
straint over r is an assertion of the form nonnull(r,A), where A is a sequence of at-
tributes of r. Such a constraint is satisfied in a database D if for each φ ∈ rD we have
φ(a) 6= null for each a ∈ A.

• unique constraints: given a relation r in the schema, a unique constraint over r is an
assertion of the form unique(r,A), where A is a sequence of attributes of r. Such a
constraint is satisfied in a database D if for each φ1, φ2 ∈ rD, with φ1 6= φ2, we have
φ1(A) 6= φ2(A).2 When we have unique(r,A) and nonnull(r,A) for r, then a key
constraint key(r,A) is associated to r.

• inclusion dependencies: an inclusion dependency is an assertion of the form r1 [A1] ⊆
r2 [A2], where r1, r2 are relations, A1, A2 are sequences of distinct attributes of r1 and
r2, respectively. Such a constraint is satisfied in a database D if πA1(rD1 ) ⊆ πA2(rD2 ).
We call an inclusion dependency r1 [A1] ⊆ r2 [A2] where A2 is in key(r2,A2) a foreign
key constraint.

• exclusion dependencies: an exclusion dependency is an assertion of the form (r1 [A1] ∩
. . . ∩ rm [Am]) = ∅, where m ≥ 2 r1, . . . , rm are relations, A1, . . . ,Am are sequences of
attributes of r1, . . . , rm, respectively. Such a constraint is satisfied in a database D if
πA1(rD1 ) ∩ . . . ∩ πAm(rDm) = ∅.

• covering constraints:3 a covering constraint is an assertion of the form (r1 [A1] ∪ . . . ∪
rm [Am]) ⊆ r0 [A0], where m ≥ 2, r1, . . . , rm, r0 are relations, A1, . . . ,Am,A0 are
sequences of attributes of r1, . . . , rm, r0, respectively. Such a constraint is satisfied in a
database D if πA0(rD0 ) ⊆

⋃
i=1,...,m πAi

(rDi ).

1Assuming this semantics for null values is not crucial, different ones can be accommodated.
2Given a function φ and a sequence of attributes A = [s1, . . . , sm], we use the notation φ(A) to indicate

the tuple composed by the values of the attributes; i.e. (φ(s1), . . . , φ(sn)).
3In ER terminology, this may also be indicated as mandatory for an IS-A relationship.
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2.2 Ontology Language

We call a DLR-DB system S a triple 〈R,P,K〉, where R is a relational schema, P is a
component structure over R, and K is a set of assertions involving names in R. In this section
we describe these concepts.

In addition to the standard definition of a relational schema, we introduce the concept
of named components. The intuition behind a named component is the role name of a rela-
tionship in an ER schema (or UML class-diagram). The component structure P associates to
each relationship a mapping from named components to sequences of attributes. Let R be a
relationship in R, to ease the notation we write PR instead of P(R).

Definition 2 Let R be a relationship in R, with attributes [s1 : D1, . . . , sn : Dn]. PR is a
non-empty (partial) function from a set of named components to the set of nonempty sequences
of attributes of R. The domain of PR, denoted CR, is called the set of components of R. For
a named component c ∈ CR, the sequence PR(c) = [si1 , . . . , sim

], where each ij ∈ {1, . . . , n},
is called the c-component of R. We denote with δ(R) the set of all attributes not belonging to
any c-component.

We require that the sequences of attributes for two different named components are not
overlapping, and that each attribute appears at most once in each sequence. I.e., given
PR(ci) = [si1 , . . . , sik

] and PR(cj) = [sj1 , . . . , sjm ], if si`
= sjr then ci = cj and ` = r.

The signature of a component PR(c), denoted τ(PR(c)), is the sequence of types of the
attributes of the component. Specifically, if the attributes of R are [s1 : D1, . . . , sn : Dn], the
signature of the component PR(c) = [si1 , . . . , sim

] is the sequence [Di1 , . . . , Dim
].

Two components PR(c1) and PR(c2) are compatible if the two signatures τ(PR(c1)) and
τ(PR(c2)) are equal.

The DLR-DB ontology language, used to express the constraints in K, is based on the
idea of modelling the domain by means of axioms involving the projection of the relationship
over the named components. An atomic formula is a projection of a relationship R over one
of its components. The projection of R over the c-component is denoted by R[c]. When
the relationship has a single component, then this can be omitted and the atomic formula R
corresponds to its projection over the single component.

Two atomic formulae R[c] and S[c′] are compatible iff the two corresponding components
PR(c) and PS(c′) are compatible. Given the atomic formulae R[c], R′[c′], Ri[ci], an axiom is
an assertion of the form specified in Figure 2.2, where all the atomic formulae involved in the
same axiom must be compatible. In the same figure, there is the semantics of a DLR-DB
system 〈R,P,K〉, which is provided in terms of relational models for R, where K plays the
role of constraining the set of “admissible” models.

A databaseD is said to be a model forK if it satisfies all its axioms, and for each relationship
R in R with components c1, . . . , ck, for any φ1, φ2 ∈ RD with φ1 6= φ2, there is some s in ci s.t.
φ1(s) 6= φ2(s). The above conditions are well defined because we assumed the compatibility of
the atomic formulae involved in the constraints. Note that, in the definition above, we require
the satisfiability of all the axioms, and in addition we consider the sequence of attributes of
all the components of a relationship as a key for the relationship itself. This reflects the fact
that in conceptual models the additional attributes not belonging to any component are not
considered relevant to identify an element of an entity or a relationship.
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R[c] v R′[c′] πcR
D ⊆ πc′R

′D Subclass

R[c] disj R′[c′] πcR
D ∩ πc′R

′D = ∅ Disjointness

funct(R[c]) for all φ1, φ2 ∈ RD with φ1 6= φ2, we have
φ1(s) 6= φ2(s) for some s in c

Functionality

R1[c1], . . . , Rk[ck] coverR[c] πcR
D ⊆

⋃
i=1...k

πci
R′Di Covering

Figure 2.1: Syntax and semantics of DLR-DB axioms.

The DLR-DB ontology language enables the use of the most commonly used constructs in
conceptual modelling. In particular, among these we mention:

ISA, using assertions of the form E1 v E2, stating that the class E1 is a subclass of the class
E2;4

Disjointness, using assertions of the form E1 disj E2, stating disjointness between the two
classes E1 and E2;

Role typing, using assertions of the form R[c] v E, stating that the role corresponding to
the c component of the relationship R is of type E;

Participation constraints, using assertions of the form E v R[c], stating that instances of
class E participate to the relationship R as value for the c component;

Non-participation constraints, using assertions of the form E disj R[c], stating that in-
stances of class E do not participate to the relationship R as value for the c component;

Functionality, using assertions of the form funct(R[c]), stating that an object can appear in
the c component of the relationship R at most once;

Covering, using the corresponding assertion to state that each member of a class must be
contained in (at least) one of the covering classes.

Note that by taking away the covering axioms and considering only components containing
single attributes this ontology language corresponds exactly to DLR-Lite (see [6]). By virtue
of the assumption that components do not share attributes, it is not difficult to show that the
same reasoning mechanism of DLR-Lite can be used in our case. The discussion on the actual
reasoning tasks which can be employed in the context of DLR-DB systems is out of the scope
of this paper. Herewith we are mainly interested of the use of the language to express data
models extracted from the relational data sources.

4As mentioned before, when a relation has a single component, the component name can be omitted.
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Chapter 3

Ontology extraction

3.1 Principles of Ontology Extraction

The principles upon our technique are based on best practices on relational schema design from
ER diagrams – a standard database modelling technique [9, 4]. One benefit of this approach
is that it can be shown that our algorithm, though heuristic in general, is able to reconstruct
the original ER diagram under some assumptions on the latter. Specifically, we consider
ER models that support entities with attributes,1 n-ary relationships which are subject to
cardinality constraints, and inheritance hierarchies (IS-A) between entities (including multiple
inheritance) which may be constrained to be disjoint or covering.

According to the methodology of translating ER model to relational model (we follow
mostly [4, 9]), entities and some relationships generate relations. These relationships always
include many-to-many and n-ary relationships. The corresponding relation includes the iden-
tifier of each of the participating entities and the additional attributes, if any. The remaining
two types of relationships, one-to-one and many-to-one, usually result in adding attribute(s)
that constitute the key of one relation to the other, thus acting as a foreign key. However,
if, for instance, null values are not tolerated, the latter relationship may result in a separate
relation. Sub-entities in ISA relationship are accounted for by creating a relation for each
sub-entity, having key that corresponds to the identifier of the super-entity. The key of each
sub-entity relation acts as a foreign key and references the key of the super-entity relation.
Table 3.1 specifies a translation λ(C) returning a relational table scheme being in 3NF for
every ER component C, where C is either an entity or a n-ary relationship (n ≥ 2).

3.2 The Extraction Process

Our proposed ontology extraction algorithm works in two phases. Firstly, a classification
scheme for relations from the relational source is derived. Secondly, based on this classification,
the ontology describing the data source is extracted. In addition, the process generates a set
of view definitions, expressing the mapping between the database schema and the ontology.
Thus, given a relational source DB = (Ψ,Σ), our task is to extract from it the ontology in

1We do not deal with multi-valued attributes in this document
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ER component C Relational table λ(C)

Entity E Table λ(E)
X = attrs(E) columns: X
K = id(E) key(λ(E),K)

Sub-entity S(E) Table λ(S)
X = attrs(S) columns: KX
K = id(E) key(λ(S),K)

λ(S) [K] ⊆ λ(E) [K]

if S1(E), . . . , Sm(E) are disjoint (λ(S1) [K] ∩ . . . ∩ λ(Sm) [K]) = ∅
if S1(E), . . . , Sm(E) are covering (λ(S1) [K] ∪ . . . ∪ λ(Sm) [K]) = λ(E) [K]

n-ary relationship
R(E1, . . . , En), n ≥ 1

Table λ(R)

X = attrs(R)
Ki = id(Ei), for i = 1, . . . , n columns: K1 . . .KnX
if R is functional on Ei side key(λ(R),Ki), for each i = 1 . . . n
if R is non-functional key(λ(R),K1 . . .Kn)

λ(R) [Ki] ⊆ λ(Ei) [Ki], for i = 1, . . . , n

if R is total on Ei side λ(Ei) [Ki] ⊆ λ(R) [Ki]

N:M relationship R(E1, E2) Table λ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(λ(R),K1K2)

λ(R) [Ki] ⊆ λ(Ei) [Ki], for i = 1, 2

if R is total on Ei side, i = 1, 2 λ(Ei) [Ki] ⊆ λ(R) [Ki]

1:N relationship R(E1, E2) Option (a): Table λ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(λ(R),K1)
Let R be functional on E1 side λ(R) [Ki] ⊆ λ(Ei) [Ki], for i = 1, 2

if R is total on Ei side, i = 1, 2 λ(Ei) [Ki] ⊆ λ(R) [Ki]

1:N relationship R(E1, E2) Option (b): Add foreign key to λ(E1)
K1 = id(E1), K2 = id(E2)
Let R be functional on E1 side λ(E1) [K2] ⊆ λ(E2) [K2]

if R is total from E1 to E2 nonnull(λ(E1),K2)
if R is total from E2 to E1 λ(E2) [K2] ⊆ λ(E1) [K2]

1:1 relationship R(E1, E2) Option (a): Table λ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(λ(R),Ki), i = 1, 2

λ(R) [Ki] ⊆ λ(Ei) [Ki], for i = 1, 2

unique(λ(R),K2)
if R is total on Ei side, i = 1, 2 λ(Ei) [Ki] ⊆ λ(R) [Ki]

1:1 relationship R(E1, E2) Option (b): Add foreign key to λ(E1)
K1 = id(E1), K2 = id(E2) λ(E1) [K2] ⊆ λ(E2) [K2]

unique(λ(E1),K2)
if R is total on E1 side nonnull(λ(E1),K2)
if R is total on E2 side λ(E2) [K2] ⊆ λ(E1) [K2]

Table 3.1: Mapping ER model to relational model.
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terms of DLR-DB ontology language (i.e., set of axioms in K), together with a set of view
definitions over DLR-DB relational source.

Roughly speaking, we reverse the process of translating ER model to relational model (i.e.,
function λ). As a result, we identify that relations representing entities in ER schema have
keys which are not part of their foreign keys, and every such foreign key represents functional
binary relationship (i.e., one-to-one or one-to-many) with another entity. On the other hand,
relations that correspond to n-ary relationships with cardinalities “many” for all participating
entities have keys composed of their foreign keys (which, in turn, reference keys of base or
specific relations). Another type of relations are those corresponding to sub-entities in an
inheritance relationship. When a relation has a key that is also a foreign key, and no other
non-key foreign keys appear in that relation, then, clearly, an inheritance relationship exists.
On the other hand, if non-key foreign keys are present but the relation is the target of some
foreign key, we are sure that this relation corresponds to sub-entity2. Otherwise, such relation
might also “look like” functional relationship (binary or n-ary), mapped directly to a relation,
and therefore relations of this type are classified as ambiguous relations (see below). The
classification function is provided in Appendix A.

Summarising, relations are classified based on the appearance of their keys and foreign
keys:

• we classify a relation ri having key disjoint with every foreign key of ri (if any) as base
relation;

• a relation ri having key which is also a foreign key and if ri satisfies one of the following
conditions

– ri has a single foreign key, or

– ri is referred to by some relation, i.e., ri appears on the right-hand side of some
foreign key constraint,

then ri is classified as specific relation;

• a relation ri having key entirely composed of foreign keys of ri, and the number of foreign
keys is greater than one, is classified as relationship relation;

• a relation ri having key which is one of the foreign keys of ri is classified as an ambiguous
relation.

Once the relations in DB are classified according to the conditions defined above, then the
actual ontology extraction process returns a DLR-DB system as output. The pseudo code for
extraction algorithm can be found in Appendix A. For every base and specific relation ri the
algorithm generates a relationship Ri with the attributes in a one-to-one correspondence with
non-key foreign key attributes of ri, and a single c-component, where PRi

(c) corresponds to
the key attributes of ri and thus functionality axiom funct(Ri[c]) is added to K;3 a view is
defined by projecting on all non-key foreign key attributes of ri.

Once relationships for base and specific relations are defined, associations between those
relationships must be identified. Specifically, a non-key foreign key in a relation ri referencing

2Observe that only relations corresponding to (sub-)entities are referred to by other relations.
3This is done because a foreign key in a base relation references either other base relation or a specific

relation, and vice versa. I.e., an association may exist between a (strong) entity and a sub-entity.

8



relation, rj , determines the association between relationships Ri and Rj . Thus, for each such
foreign key, a relationship Rk is generated, having two components, ci-component and cj-
component, where PRk

(ci) and PRk
(cj) correspond to key attributes of ri and rj , respectively,

where ci-component is functional, i.e., we have funct(Rk[ci]) in K; a corresponding view is
defined by joining rj with ri and projecting on their keys. For expressing an association,
determined by Rk, between Ri and Rj the axioms of the form Rk[ci] v Ri and Rk[cj ] v Rj

are added to K. Furthermore, whenever the latter foreign key of ri participates in a nulls-not-
allowed constraint, the axiom Ri v Rk[ci] is generated stating mandatory participation for
instances of Ri to Rk as values for the ci-component; its participation to a unique constraint
determines instead the functionality axiom funct(Rk[cj ]) meaning that every value of the cj-
component appears in it at most once; finally, appearance of the foreign key of ri in the
right-hand side of an inclusion dependency determines mandatory participation for values of
the only component of Rj to the relationship Rk as values for the cj-component, and thus the
axiom Rj v Rk[cj ] is added to K.

For expressing an ISA between classes, for every specific relation ri the subclass axiom
Ri v Rj is added to K, where Rj is the relationship corresponding to (base or specific)
relation, rj , that the key foreign key of ri references. Additionally, each exclusion dependency
on the set of specific relations induces the disjointness axioms Ri disj Rk, for every pair of
relations ri, rk appearing in the exclusion dependency. Similarly, every covering constraint on
the set of specific relations induces the corresponding covering axiom in K.

Each relationship relation ri is accounted for by generating a relationship Ri, with at-
tributes in a one-to-one correspondence with those of ri, and n components, where n is the
number of foreign keys of ri. Each PRi

(cil
) (l ∈ {1, . . . , n}) has sequence of attributes corre-

sponding to the l-th foreign key attributes of ri; the corresponding view is defined by projecting
on all attributes of ri. Then, for each foreign key of ri referencing relation rj (that is already
represented with a relationship Rj having a single component), the algorithm generates an
axiom Ri[cil

] v Rj stating that the role corresponding to the cil
-component of Ri is of type

Rj . Furthermore, if this foreign key appears on the right-hand side of an inclusion dependency,
the axiom Rj v Ri[cil

] is added to K that states mandatory participation for instances of Rj

to the relationship Ri as values for the cil
component.

Finally, the appropriate structures for ambiguous relations must be identified. As already
discussed before, an ambiguous relation may correspond in ER schema to either sub-entity,
which also participates with cardinality “one” in a binary relationship, or a functional rela-
tionship that was directly mapped to a relation. Following the idea that all functional binary
relationships should be represented in a relational model with an embedded foreign key, e.g.,
in order to obtain the relational schema with a minimum number of relations, and that n-ary
relationships (n ≥ 3) are relatively unusual, our heuristics “prefers” to recover an inheritance
relationship, and thus the algorithm generates the structures corresponding to those defined
for specific relations. On the other hand, a user could decide which is the “best” structure for
ambiguous relations. In this way, the ontology extraction task may be a completely automated
procedure, or semi-automated process with a user intervention.
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3.3 Example

As an example of the ontology extraction process, consider the relational schema (primary
keys are underlined) with constraints of Figure 3.1.

Scholarr(ssn, name, deptNo) Publicationr(id, title, year)
IsAuthorOfr(schSsn, publId) Departmentr(no, name)

PostDocr(ssn, scholarship) Professorr(ssn, salary)
(a) Scholarr [deptNo] ⊆ Departmentr [no]
(b) IsAuthorOfr [schSsn] ⊆ Scholarr [ssn]
(c) IsAuthorOfr [publId] ⊆ Publicationr [id]
(d) PostDocr [ssn] ⊆ Scholarr [ssn]
(e) Professorr [ssn] ⊆ Scholarr [ssn]
(f) Scholarr [ssn] ⊆ IsAuthorOfr [schSsn]

(g) Publicationr [id] ⊆ IsAuthorOfr [publId]
(h) Departmentr [no] ⊆ Scholarr [deptNo]
(i) unique(Scholarr, deptNo)
(j) nonnull(Scholarr,deptNo)
(k) PostDocr [ssn] ∩ Professorr [ssn] = ∅
(l) Scholarr [ssn] ⊆ PostDocr [ssn] ∪ Professorr [ssn]

Figure 3.1: Relational schema with constraints.

At the initial step of extraction process, relations Scholar, Publication and Department
are classified as base relations, i.e. their keys and foreign keys do not share any attributes;
IsAuthorOf relation is classified as relationship relation – its key is entirely composed from
foreign keys; while relations PostDoc and Professor satisfy the conditions required for specific
relations, i.e. the key ssn is their single foreign key.

Without going again into details of the algorithm, we list below the extracted relationships
of DLR-DB R together with the devised component structure P, by considering the relation
names and their corresponding attributes in the input relational source. Starting with base
and specific relations, we have the corresponding relationships with single components. Since
the component names for the latter relationships are not relevant (they can be omitted), we
choose a common name id for all the five of them.4 Figure 3.2 shows the extracted ontology
together with the corresponding ER diagram.

Relationship Component c PR(c) Additianal attr. View definition

Scholar id ssn name πssn,name(Scholarr)

Publication id id title, year πid,title,year(Publicationr)

Department id no name πno,name(Departmentr)

PostDoc id ssn scholarship πssn,scholarship(PostDocr)

Professor id ssn salary πssn,salary(Professorr)

WorksFor employee ssn πssn,no(Departmentr on Scholarr)
dept no

IsAuthorOf author schSsn πschSsn,publId(IsAuthorOfr)
publication publId

The constraints on the input relational source reflect those added to K of DLR-DB system.
We list all the extracted axioms by the algorithm below. In particular, foreign key constraints
(a)-(c) for base and relationship relations induce axioms (1) to (4) stating role typing of
the corresponding relationships. The inclusion dependencies in (f)-(h) and nulls-not-allowed
constraint in (j) above induce the axioms (5) to (8) stating mandatory participation for Scholar

4For the sake of clarity, the naming of the components for relationships WorksFor and IsAuthorOf, as well
as the name of the WorksFor relationship itself, are determined by domain knowledge.
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and Publication to the relationship IsAuthorOf, and for Scholar and Department to WorksFor.
Functionality axiom in (9) is used to impose the upper limit for the multiplicity on employee
component, which is induced by the uniqueness constraint in (i). Subclass axioms in (10)
and (11) express inheritance relationship, determined by foreign key constraints associated
to specific relations in (d), (e). Finally, based on (k) and (l) above, axioms (12) and (13),
respectively, are extracted.

Scholar

PostDoc Professor

IsAuthorOf WorksFor

scholarship salary

ssn
name

Publication Department

id
title

year no name

publication employee dept1,n1,n 1,1

 { disjoint }

author 1,n

(1) IsAuthorOf[author] v Scholar
(2) IsAuthorOf[publication] v Publication
(3) WorksFor[employee] v Scholar
(4) WorksFor[dept] v Department
(5) Scholar v IsAuthorOf[author]
(6) Publication v IsAuthorOf[publication]

(7) Scholar vWorksFor[employee]
(8) Department vWorksFor[dept]
(9) funct(WorksFor[employee])
(10) PostDoc v Scholar
(11) Professor v Scholar
(12) PostDoc disj Professor

Figure 3.2: Extracted ontology and corresponding ER diagram.

3.4 Information Capacity Preserving

Our proposed ontology extraction technique can be seen as a schema transformation as defined
in [17]. An important consideration in such a process (i.e., transforming one data model into
another) is the potential for loss of information. We may evaluate the correctness of our
schema extraction procedure based on the relative information capacities of the source and
target schemas. In this section we show that our ontology extraction procedure is equivalence
preserving.

In the following we denote by S and T source and target schemas corresponding to the
input relational source DB and relational schema R of the extracted DLR-DB system.

Definition 3 Let DS and DT be consistent instances of schemas S and T , respectively. An
equivalence preserving mapping between the instances of S and T is a bijection µ : DS → DT .
Then S and T are said to be equivalent via µ, denoted S ≡ T .

Given schemas S and T , a (schema) transformation is a total function M : S → T . M is
an equivalence preserving transformation if it induces an equivalence preserving mapping. To
this end, we come up with the following result:

Theorem 1 The ontology extraction procedure is an equivalence preserving schema transfor-
mation.
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Proof. Let S and T be source and target schemas, and let DS and DT be databases over
S and T respectively. Let µ denote the mapping function as defined in Definition 3. We have
to show that

1. µ(DS) = µ(D′S)⇒ DS = D′S , i.e., µ is injective;

2. If DS is consistent w.r.t. S ⇒ µ(DS) is consistent w.r.t. T ;

3. If DT is consistent w.r.t. T ⇒ ∃DS s.t. DS is consistent w.r.t. S ∧ µ(DS) = DT .

Let X, K and FKi denote respectively the sequence of non-key, key and foreign key attribute
names of a source relation r, where every FKi, 1 ≤ i ≤ n, references relation ri. Let A denote
the sequence of all attribute names of r. First of all observe that the mapping function µ
applied for each class of relations results in the following:

• for a base relation r,

µ(r) =


πK,X(r),
πK,K1(r1 on r),
. . .
πK,Kn

(rn on r);

• for a relationship relation r,
µ(r) = πA(r);

• for a specific relation r, µ(r) is identical to the one of base relation;

• for an ambiguous relation r, µ(r) is identical to the one of base relation, when extrac-
tion procedure is completely automatic; otherwise it coincides with the one defined for
relationship relation.

Note that attribute names are in a one-to-one correspondence in r and µ(r), e.g. the sequence
of key attributes K of r coincide with K in µ(r). Moreover, as mapping definitions for specific
and ambiguous relations coincide with those of base and relationship relations, in the following,
without loss of generality, we will only distinguish between base and relationship relations.

Proof of statement 1. Let by contradiction DS 6= D′S . Then ∃t ∈ DS ∧ t /∈ D′S . Let t ∈ r.
We distinguish two cases, namely when r is a base and relationship relation.

Case 1: r is a base relation. Since µ(DS) = µ(D′S), then πK,X(rDS ) = πK,X(rD
′
S ). Hence

∃t′ ∈ rD′S such that t′ 6= t and t. {K,X} = t′ {K,X}. We get a contradiction, since key
requirement being unique is violated.

Case 2: r is a relationship relation. Proof by contradiction as in previous case.

Proof of statement 2. Let γ be axiom over T and suppose by contradiction µ(DS) is
inconsistent w.r.t. T , i.e. ∃γ s.t. γ is not satisfied in µ(DS). Consider r ∈ S. Following
the notation used throughout the document, we denote by R a relation in T obtained by
extraction procedure.

• γ is a functionality axiom funct(R[c]). This may correspond in S to the following con-
straints:
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– key(r,K), where r is a base relation and R is a relation obtained by πK,X(r). Then
the c-component of R is in a one-to-one correspondence with the key attributes K
of r. If the functionality axiom is not satisfied in DT (i.e., c does not contain unique
values), then the key K condition being unique is violated. We get a contradiction.

– unique(r, FKi), where r is a base relation andR is a relation obtained by πK,Ki
(ri on

r), where ri is a relation referenced by FKi. Then the c-component of R is in a
one-to-one correspondence with the key attributes Ki of ri. If the functionality
axiom is not satisfied in DT , then the key Ki condition being unique is violated,
which is a contradiction.

• γ is a subclass axiom R[c] v R′[c′]. This correspond in S to the following constraints:

– r [FKi] ⊆ ri [Ki], where r is a base or specific relation and ri is a base relation. Then
R′ is a relation generated by πK,X(r) and R - a relation obtained by πK,Ki(ri on r)
respectively. The c-component and c′-component of R and R′ are in a one-to-one
correspondence with the key attributes K of r. If the subclass axiom is not satisfied
in DT (i.e., there are values of c-component that are not contained in c′-component),
then we get a contradiction because of violating the key K.

– r [FKi] ⊆ ri [Ki], where r is a relationship relation and ri is a base or specific
relation. Then R is a relation generated by πA(r) and R′ - a relation obtained by
πKi,Xi

(ri). The contradiction is obtained following the reasoning of the previous
case.

– notnull(r, FKi), where r is a base relation. R is a relation generated by πK,X(r) and
R′ - relation obtained by πK,Ki(ri on r), where ri is a relation referenced by FKi.
Then c-component of R and c′-component of R′ are in a one-to-one correspondence
with the key attributes K of r. If the subclass axiom is not satisfied in DT (i.e.,
there are c-component values that are not included in c′-component values), we get
a contradiction because violating the key K.

• γ is a disjointness axiom R1 disj R2. This correspond in S to exclusion dependency
πK1(r1) ∩ πK2(r2) = ∅, where r1 and r2 are specific relations. The single components of
R1 and R2 are in a one-to-one correspondence with the key attributes of r1 and r2. If
the disjointness axiom is not satisfied in DT then the corresponding exclusion constraint
is not satisfied which is a contradiction.

• γ is a covering axiom R1[c1], . . . , Rm[cm] coverR. This correspond in S to a covering
constraint πK(r) ⊆ πK1(r1) ∪ . . . ∪ πKm(rm), where r is a base relation and r1, . . . , rm
are specific relations. The contradiction follows based on the reasoning in the previous
case.

Proof of statement 3. We start by showing that µ is reversible (or lossless), i.e., we can
define a function µ−1, the inverse of µ, such that every relation r ∈ S can be built back by
applying µ−1. That is, ∀r ∈ S, µ−1(µ(r)) = r. Specifically, for building back a base relation
r, µ−1 is defined as follows:

µ−1(R) = R on Rrel1 on . . . on Rreln ,
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where R corresponds to relation πK,X(r) and each Rreli (1 ≤ i ≤ n) is a relation obtained by
πK,Ki(ri on r). For a relationship relation r, µ−1 has the form

µ−1(R) = πB(R),

where R is a relation obtained by πA(r) and B is a sequence of attribute names of R5.
Since inverse functions exist for each r ∈ S, there exists a database instance, DS over S.

Let ε be constraint over S and suppose by contradiction DS is not consistent with S, i.e., ∃ε
s.t. ε is not satisfied in DS . Consider r ∈ S. Again, we distinguish two cases:

Case 1: r is a base relation built by R on Rrel1 on . . . on Rreln .

• ε is a key constraint key(r,K). Then we have in T a functionality axiom funct(R[c])
satisfied in DT . The single c-component of R is in a one-to-one correspondence with
the attributes in K, and if key(r,K) is not satisfied in DS (i.e., key is not functional
or contains null values) then the corresponding functionality axiom is not satisfied
in DT , which is a contradiction.

• ε is a nulls-not-allowed constraint notnull(r, FKi). Then we have in T a subclass
axiom R v Rreli [c1] satisfied in DT . The single component of R and c1-component
of Rreli are in a one-to-one correspondence with the key attributes K of r. If
notnull(r, FKi) is not satisfied in DS (i.e., if FKi contains null values), the c-
component and c1-component contain null values, which is a contradiction.

• ε is a unique constraint unique(r, FKi). Then we have in T a functionality axiom
funct(Rreli [c2]) satisfied in DT . c2-component of Rreli is in a one-to-one corre-
spondence with the attributes of Ki of ri. If unique(r, FKi) is not satisfied in DS
(i.e., FKi is not functional), then the c2-component is not functional, which is a
contradiction.

• ε is a foreign key constraint r [FKi] ⊆ ri [Ki]. Then there are in T two subclass
axioms Rreli [c1] v R and Rreli [c2] v Ri satisfied in DT . c1-component of Rreli and
a single component of R (resp. c2-component of Rreli and a single component of
Ri) are in a one-to-one correspondence with K attributes of r (resp. Ki attributes
of ri). If the foreign key constraint is not satisfied (i.e., FKi contains value(s) that
is not contained in Ki) we get a contradiction by violating the key K.

• ε is an inclusion dependency ri [Ki] ⊆ r [FKi]. Then there is in T a subclass axiom
Ri v R[c2] satisfied in DT . Following reasoning of the previous case, if the inclusion
dependency is not satisfied in DS , the corresponding subclass axiom is not satisfied
in DT which is a contradiction.

• ε is an exclusion dependency πK1(r1) ∩ πK2(r2) = ∅6. Then there is in T the
disjointness axiom R1 disj R2 satisfied in DT , where R1 and R2 are defined as R
above and single components of R1 and R2 correspond to the attributes of K1 of
r1 and K2 of r2, respectively. Thus, if the exclusion dependency is not satisfied in
DS , then the components of R1 and R2 share values which is a contradiction.

5Note that the sequence of attributes B coincide with that of A
6Exclusion dependency (as well as covering constraint below) is applicable only to specific relations. Since

mapping function for base and specific relations coincide, we include this constraint here.
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• ε is a covering constraint πK(r) ⊆ πK1(r1)∪ . . .∪ πKm
(rm). Then there is in T the

covering axiom R1[c1], . . . , Rm[cm] coverR satisfied in DT . We get a contradiction
based on the reasoning of the previous case.

Case 2: r is a relationship relation built by πA(R). The constraints applicable to r are the
following:

• ε is a key constraint key(r,K). All attributes of R ∈ T are in a one-to-one corre-
spondence with those of r and thus the key of R is composed of K and is satisfied
in DT . If key(r,K) is not satisfied in DS , then the key of R is not satisfied in DT ,
which is a contradiction.

• ε is a foreign key constraint r [FKi] ⊆ ri [Ki]. Then there is in T a subclass axiom
R[ci] v Ri satisfied in DT . ci-component of R and a single component of Ri are in
a one-to-one correspondence with FKi and Ki attributes of r and ri, respectively.
If r [FKi] ⊆ ri [Ki] is not satisfied in DS (i.e., FKi contains values that are not
part of Ki), then ci-component of R contains values that are not contained in a
single component of Ri, which is a contradiction.

• ε is an inclusion dependency ri [Ki] ⊆ r [FKi]. Then we have in T a subclass axiom
Ri v R[ci] satisfied in DT . Following reasoning of the previous case, if the inclusion
dependency is not satisfied in DS , the corresponding subclass axiom is not satisfied
in DT which is a contradiction.

Finally, we have to show that µ(DS) = DT . Suppose by contradiction µ(DS) 6= DT and
consider r ∈ S. We distinguish two cases:

Case 1: r is a base relation. Then there is R ∈ T s.t. R either has the sequence of attributes in
a one-to-one correspondence with non-foreign key attributes of r (denoted by R(K,X))
or R has attributes in a one-to-one correspondence with key attributes of r and its
referenced relation ri (denoted by R(K,Ki)). Consider µ(r). By assuming that µ(r) 6= R
we get immediately contradiction.

Case 2: r is a relationship relation. Proof follows based on the reasoning above.
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Chapter 4

Related Work

The primary motivation of our work is a scenario for extracting from a relational database
schema its corresponding conceptual view. In this process we integrate aspects of database re-
verse engineering, and since our ontology language is closely related to ER or UML formalisms,
the works on extracting ER (or EER) and object models are of particular interest. Much work
has been addressed on the issue of explicitly defining semantics in database schemas [2, 5] and
extracting semantics out of database schemas [8, 16]. The work described in [2] provides al-
gorithms that investigate data instances of an existing legacy database in order to identify
candidate keys of relations, to locate foreign keys, and to decide on the appropriate links be-
tween the given relations. However, the results on querying data instances cannot “guarantee”
satisfaction of certain constraints; e.g., the fact that there are no null values in a particular
attribute does not mean that it is NOT NULL. As a result, user involvement is always re-
quired. The approach in [4] depends on the user to resolve name conflicts, and to specify the
required semantic information that leads to identify the keys. In our work we instead assume
the knowledge on key and foreign key constraints, as well as non null and unique values on
attributes, inclusion and disjointness between relations, etc. exist in the schema. The work
in [16] propose transformations that are applied to produce the re-engineered schema and
handles the establishment of inheritance hierarchies. However, it considers relations in BCNF
and thus every relation is in a one-to-one correspondence with an object in the extracted
schema. The main idea of the methodology described in [8] comes close to ours in the sense
that it derives classification for relations and attributes based on heuristics of what kind of
ER components would give rise to particular relations.

The recent call for a Semantic Web arose several approaches in bringing together relational
databases and ontologies. Among them we mention [3], where the authors describe an auto-
matic mapping between relations and ontologies, when given as input simple correspondences
from attributes of relations to datatype properties of classes in an ontology. Unlike our ap-
proach, it requires a target ontology onto which the relations are mapped to. On the other
hand, the approach of [12] extracts the schema information of the data source and converts
it into an ontology. However, the latter technique extracts only the structural information
about the ontology, so the constraints are not taken into account.
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Chapter 5

Conclusions

We have described an heuristic procedure for extracting from relational database its conceptual
view, where the wrapping of relational data sources by means of an extracted ontology is done
by associating view over the original data to each element of the ontology. To represent
the extracted ontology, instead of a graphical notation, we employ an ontology language
thus providing a precise semantics to extracted schema. Our extraction procedure relies on
information from the database schema, (i.e., key and foreign key structure, restrictions on
attributes and dependencies between relations), and automatically extracts all the relevant
semantics if an input relational schema was designed using a standard methodology. The
resulting ontology can be used to access the data source by means of query rewriting using
the defined views. However, this can be done as long as the ontology itself is not going to
be modified. In such a case, query rewriting techniques should be used to retrieve the data
(see [6]).

We are currently following several directions to continue the work reported in this paper.
First, conceptual modelling constructs as multi-valued attributes and weak entities, alterna-
tive techniques for inheritance representation in relational tables (e.g., when a super-class is
embedded in its subclass relations). On the other hand, additional sources of knowledge, e.g.
linguistic relationships between keys, can be used to disambiguate relations. The results of
our technique should be validated by an empirical analysis. To this purpose we are starting
to experiment with real database schemas to evaluate the quality of the extracted ontologies.
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Appendix A

Extraction Algorithms

Function classify classifies the relations in the input relational source into the base (denoted by
ΨB), relationship (denoted by ΨR), specific (denoted by ΨS) and ambiguous (denoted by ΨA)
relations. Let card(X) denote cardinality of set X and refrels denote the set of all relations
referenced by foreign keys.

Function classify(DB)
Input: Relational source DB = (Ψ,Σ)
Output: Sets ΨB ,ΨR,ΨS ,ΨA of classified relations
ΨB := {};
ΨR := {};
ΨS := {};
ΨA := {};
for each ri ∈ Ψ do

if PKi ∩ FKi = ∅
then ΨB := ΨB ∪ ri;
else if PKi = FKi and card(FKi) > 1

then ΨR := ΨR ∪ ri;
else if PKi = FKi and card(FKi) = 1 or ri ∈ refrels

then ΨS := ΨS ∪ ri;
else ΨA := ΨA ∪ ri

end

Algorithm extract returns the DLR-DB system with the set of relationships in R and set of
axioms in K. We denote by R(C1, . . . , Cn) the relationship R ∈ R with n components, where
every ci-component of R is in a one-to-one correspondence with the sequence Ci of attributes
of a source relation r. Let ri ∈ Ψ correspond to a relationship Ri ∈ R.

Algorithm extract(DB)
Input: Relational source DB = (Ψ,Σ)
Output: DLR-DB system S and set of view definitions V
R := {};
K := {};
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V := {};
classify(DB);
(a) for each ri ∈ ΨB do
R := R∪Ri(PKi);
K := K∪ funct(Ri[PKi]);
V := V ∪ Vi : πPKi,Xi

(ri);
end;
for each ri ∈ ΨS do
perform sequence inside (a);
end;
for each ri ∈ ΨA do

perform sequence inside (a);
end;
(b) for each ri ∈ ΨB s.t. FKi 6= ∅ do

for each FKij ∈ FKi do
R := R∪Rk(PKi, PKj);
K := K ∪Rk [PKi] ⊆ Ri;
K := K ∪Rk [PKj ] ⊆ Rj;
V := V ∪ Vi,j : πPKi,PKj (rj on ri);
if notnull(ri, FKij ) is satisfied

then K := K ∪Ri ⊆ Rk [PKi];
if unique(ri, FKij

) is satisfied
then K := K∪ funct(Rk[PKj ]);

if FKij
appears on the right-hand side of an inclusion dep.

then K := K ∪Rj ⊆ Rk [PKj ];
end;
for each ri ∈ ΨS s.t. FKi > 1 do

for each FKij
∈ FKi s.t. FKij

6= PKi do
perform sequence inside (b);

end;
for each ri ∈ ΨA s.t. FKi > 1 do

for each FKij
∈ FKi s.t. FKij

6= PKi do
perform sequence inside (b);

end;
for each ri ∈ ΨR do
R := R∪Ri(PKi1 , . . . , PKin);
V := V ∪ Vi : πAi(ri);
for each FKij

∈ FKi do
K := K ∪Ri

[
FKij

]
⊆ Rj;

if FKij
appears on the right-hand side of an inclusion dep.

then K := K ∪Rj ⊆ Ri

[
FKij

]
;

end;
for each exclusion dependency (r1 ∩ r2 = ∅) ∈ Σ do
K := K ∪R1 disj R2;

end;
for each covering constraint r ⊆ r1 ∪ . . . ∪ rm ∈ Σ do



K := K ∪R1, . . . , Rm coverR;
return S,V


